- 投稿日:
単体テストは、コードの品質を向上させ、開発効率を高めるために欠かせないものだ。本記事では、単体テストを導入することで得られるメリットとその理由について解説する。
単体テストを書くことについて
単体テストを書くことには賛否両論あると思うが、私は書いたほうが良いと考えている。これは単にテストコードを書くことによってデグレが起きづらくなるからだけではなく、可読性の向上やコンフリクト頻度の減少など、様々な恩恵があるからだ。
この記事では、単体テストを書くことで得られるメリットについて書いていく。特に、関数を活用した開発(クラスを使わないスタイル)、TypeScriptでReactの関数コンポーネントを書くようなケースを前提に話を進める。
関数が小さくなる
単体テストの目的は、関数やクラスといった単位でその振る舞いを検証することだ。しかし、もし関数が1000行に及び、クロージャや分岐、ループが複雑にネストされていると、テストは非常に困難になる。つまり、これを回避しようとすると、自然と関数のサイズは小さくなり、責務が一つにまとまる設計となる。
関数が小さくなることでスコープが短くなり、見通しが良くなるほか、変数名を簡略化できる利点も生まれる。長すぎる変数名は基本的に有害だ。例えば以下のようなコードは誰も見たくないはずだ。(しかもよく見ると罠のようにも見えるコードだ)
const loooooooooooooooooooongVariableNameExtraResult = `${loooooooooooooooooooongVariableNameExtraParameter1} ${loooooooooooooooooooongVariableNameExtraParameter3} ${shortVar} ${loooooooooooooooooooongVariableNameExtraParameter2}`;
例えば、Go言語では一文字変数が一般的に受け入れられているが、これは関数のスコープが非常に短く、簡潔なコードが成立しやすい文化があるからだ。
疎結合な設計にしやすくなる
密結合なコードはテストがしづらい。そのため、単体テストを書こうとすると、自然と疎結合な設計になりやすくなる。具体的には、依存性逆転の原則に従った設計を採用するようになる。
例えば、次のようなコードはDate ()
を直接使用しており、テストが困難だ。このような場合、Date ()
をモックするために専用のライブラリやハックを使うことが多くなり、プログラムの保守性が悪化しがちだ。しかし、依存を外部から注入する設計にすれば、そういった心配は不要になる。
const isOneDayLater = (time: number) => {
return (+new Date() - time) > 86_400_000;
};
しかし、以下のように外部から値を注入すればモックしなくともテストコードを書くのが容易になる。第二引数に値を入れればいいからだ。
const isOneDayLater = (time: number, baseEpochTime: number) => {
return (baseEpochTime - time) > 86_400_000;
};
コンフリクトが起きづらくなる
Gitを利用した並行開発においてはブランチをマージするときにコンフリクト、つまりコードの競合が起きることがしばしばある。しかしこれまでに書いたように責務別にモジュール化された簡素なコードではコンフリクトの規模が自然に小さくなり、コンフリクト自体が減ったり、万一起きた時でも影響範囲が限定されるようになる。
コンフリクトの解消ミスがあり本番障害が出た、後続のQAフェーズなどで差し戻しが起きたみたいなのはよくある光景だと思うが、単体テストの導入による設計の改善があれば、それが起きた時のコストを減らすのに貢献することが可能だ。
コードの見通しが良くなる
適切に単体テストを意識してコードを書くと、自然と「べた書き」から「モジュール化」されたコードに変わる。
べた書きされたコードの例
例えば次のような関数は冗長だ。この程度の長さならまだしも、これが500行、1000行と増えていくと読むのが大変になる。現実ではもっとネストが酷かったり、前後に長大関数がいて、注意深く読まないと解読不能ということもままある。そしてこの関数をテストするのは書いてある処理すべてを検査する必要があるので、テストコードも長くなり、しんどい。
export const registerUser = async (user: User) => {
if (!/^\d+$/.test(user.id)) {
throw new Error('ユーザーIDの書式が不正です。');
}
if (user.firstName === '') {
throw new Error('姓が入力されていません。');
}
if (user.lastName === '') {
throw new Error('名が入力されていません。');
}
if (user.gender === '') {
throw new Error('性別が入力されていません。');
}
if (user.address === '') {
throw new Error('住所が入力されていません。');
}
const resp = await fetch('https://example.com/api/v1/user', {
method: 'POST',
body: JSON.stringify({
id: Number(user.id),
name: `${user.firstName} ${user.lastName}`,
gender:
user.gender === '0' ? 'male' : user.gender === '1' ? 'female' : 'other',
address: user.address,
}),
})
.then(async (resp) => await resp.json())
.catch((e) => e);
if (resp.status === 200) {
return resp;
} else {
const payl = resp.json();
return {
errorMessage: payl.errorMessage,
};
}
};
モジュール化されたコードの例
次のように書けば34行あった関数が9行にまで減り、見通しが良くなる。
export const registerUser = async (user: User) => {
validateUser(user);
const payload = createRegisterUserPayload(user);
const resp = await requestRegisterUser(payload);
return validateRegisterUserResponse(resp);
};
関数の中で何をしているかわからないという声もあるだろうが、関数名から内容を読み取れるようにしておけば問題にならない。読み取れない処理を入れなければいいのだ。こういう風にべた書きを一定の粒度で関数化することをモジュール化と呼ぶ。
この時、それぞれの関数(validateUser()
など)は単一責務を持つため、単体テストのスコープが明確になる。親となる関数(この場合registerUser()
)のテストでは、子関数をモックすることで簡潔なテストが可能だ。この場合、親となる関数は子関数を呼び出すことが責務になる。
再テストの効率化
コードを直すことはよくあることで、コードを書いているときに一度書いたコードを直したり、レビュー指摘で直したりする。この時に、関係する部分を手動でテストするのは非効率だ。しかし、単体テストがあれば、その工数を大幅に削減できる。
特に分岐の網羅性が重要な場合、単体テストがあるとないとでは開発者の苦痛が大幅に変わるだろう。例えば、4つの分岐があるロジックでさえ、全数網羅では16パターンにも達するため、これを手動で見るのは手間である。しかしテストコードがあれば、自動テストを蹴るだけでいい。心理的負担も時間もこちらの方がローコストで現実的だ。
実装者が設計した時の意図がある程度読み取れる
コードを見ていて「こんなケースはないだろう」と思うことはしばしばあると思うが、そんな時にもしテストコードが存在すればケース名が書いてあるはずだ。それによって当時どのような意図で実装されたのかを知ることができる。これはコードの理解をより深く助ける手助けとなり、「負債に見えたから消したら不具合が出た」といったケースを減らすことに貢献することができる。
手動テストはなくならない
単体テストが充実していても、手動テストが完全になくなるわけではない。特に初回実装時は、プログラムが正しく動作するかどうかを確認する必要があるため、手動テストで動作確認を行い、その上で単体テストを信頼できる状態にするのが基本だ。
単体テストの限界と現実的な運用
さて、ここまで持ち上げてきた単体テストだが、決して銀の弾丸ではない。単体テストを入れてもバグを完全にゼロにすることは出来ないし、正しくないテストコードを書いたり、レビューが不十分であればテストが不正に通過する可能性もある。
正しくないテストコードを書かないための工夫としては、テストコードを書いた後に実装側を修正し、意図的にテストが落ちるようにしたときに、テストが落ちることを確認することが有用だ。これによって、実装が正しくない状態になったときにテストが正しく落ちることが確認できる。逆に落ちなかった場合、そのテストは機能していないと言える。
またテストを全数書くというのも非現実的であるため、TypeScriptの開発であれば型を騙すas
のようなものは使わず、極力正しい型を検証できるように静的解析に任せるのが良い。戻り値の型指定も場合によっては型を騙すのに使えるケースがあるため、バグを生み出す元になる場合もあり、気を付けたほうが良い。
何より単体テストで見れるのは単体であり、結合は見れないため、あくまで単体テストはベースのロジックを担保するものとして使い、全体面は結合テストやe2eテスト、手動テストで見ていくのが良いだろう。
理想的には単体テストで網羅し、正常系と異常系のそれぞれ1パターンを結合で、初回実装時のみ手動テストというのがよいと考えている。これは結合テストで網羅ケースを書いてしまうと単体テストを書く意味がないうえに、重複テストが大量に発生し、実行速度が遅くなるし、規模が大きい分メンテナンスが大変になるからだ。
e2eテストは決済などのクリティカルケースにはあったほうが良いと思うが、コストの重さからしてそれ以外にはあまりなくてよいと思う。大抵のケースで手動の方が楽だろう。手動テストでは結果の誤りが出る可能性は残るが、些末な処理で100点を目指しても仕方がないので、多少の不具合は許容で良いのではないかと思う。
単体テストが有効に機能しづらいケース
単体テストは銀の弾丸ではないため、機能しないケースが当然ある。
元から単体テストがないプロジェクトに導入するケース
元々単体テストが導入されていないプロジェクトでは多くの困難を伴う。
例えば、関数やクラスがべた書きされており、責務が曖昧なまま複雑に絡み合っているコードでは、単体テストを書くこと自体が非常に難しい。分解しようにも目に見えている範囲だけを直せないケースも少なくない。これは他の機能がその機能と強く結合しており、根幹となる部分から直していかないと上手くいかないケースがあるからだ。
この状態の関数に対するテストを書いても、リファクタリングで分割された時の動作保証がやりづらい。何故ならこの手のものは大抵きれいに分割できず、再集計になるまでに紆余曲折をたどるからだ。
単体テストに対する理解が異なるケース
「単体テスト」の「単体の単位」が上手く認識されていない場合、本来あるべき単体テストの意義や役割が意識されていないことがある。これは結合テストやe2eテストが単体テストとして扱われているケースだ。
例えば画面の単体テストの定義が、実際に画面を操作し、APIをコールし、その結果に基づいた動作の確認だったり、複数の関数を呼び出す関数を単体として考えているケースでは、単体に対する意識が異なるため、本来あるべき単体テストの導入が難しいことがある。
有効な開発標準やコーディング規約が存在しないケース
有効な開発標準やコーディング規約がなく、コードの裁量がメンバー個々人に委ねられているケースでは、チームメンバーがそれぞれ独自のスタイルでコードを書いていることもあり、より問題を複雑化させることもある。
こういったケースではありとあらゆるコードが想定外の振る舞いをするため、単体テストの導入を阻む障壁となる。
破壊的変更が多いケース
これは要件や仕様などの上流部分が固まらず、日々変動するようなプロジェクトの話だ。
いつ仕様が固まるかわからないのでコードだけは書き続ける必要があり、日々変わるので動作確認もおろそかになる。このようなプロジェクトでは書いたコードが無価値化することが日常であるため、テストコードを書くという行為自体が陳腐化していきがちだ。
単体テストを書く文化がないケース
プロジェクトの方針として単体テストを書くことを推奨していなかったり、認めていない場所がある。こういった場所では、単体テストの重要性が理解されていないことも少なくなく、テストを書くことがむしろ「余計な作業」として扱われることがある。そういったシーンで単体テストを書くと、プロジェクト内で孤立するリスクがあり、難しい。
まとめ
単体テストを書くことで自然とSOLID的な設計に近づき、コードが読みやすくなり、ある程度変更に強く、開発速度も上がり、一定の品質も担保出来るため、単体テストを書くことによる恩恵は少なくない。これは間違いなくメリットだ。
しかし一方で、単体テストは銀の弾丸ではなく、密結合でテストしにくいコードや、頻繁に仕様変更が発生するプロジェクト、文化的に単体テストが認められていない環境では上手く機能しないケースもある。
- 投稿日:
関数の仮引数にthis
が入っているタイプの奴。FastifyのsetErrorHandlerに渡す関数のテストをする時に詰まったので書いておく。滅多に遭遇しないケースだと思う。
確認環境
Env | Ver |
---|---|
jest | 29.7.0 |
typescript | 5.3.3 |
実装コード
export class HogeServer {
constructor() {
console.log();
}
}
interface HogeServerInstance {
setErrorHandler(
handler: (
this: HogeServer,
error: unknown,
callback: (code: number) => void
) => void
): HogeServer;
}
// 型定義にthisが入っていてテスト時に上手くいかない
// const handle: (this: HogeServer, error: unknown, callback: (code: number) => void) => void
type HandlerFunc = Parameters<HogeServerInstance['setErrorHandler']>[0];
export const handle: HandlerFunc = (err, cb) => {
if (err instanceof Error) {
cb(500);
} else {
cb(200);
}
};
export const fuga = (s: HogeServerInstance) => {
s.setErrorHandler(handle);
};
テストコード
import { HogeServer, handle } from '.';
describe('handle', () => {
it('errがErrorインスタンスの時', () => {
const thisMock = {} as unknown as HogeServer;
const err = new Error('error-hoge');
const cbFn = jest.fn();
// .call()を使うことでthis付きで呼び出せる
handle.call(thisMock, err, cbFn);
expect(cbFn).toHaveBeenCalledWith(500);
});
it('errがErrorインスタンスではない時', () => {
const thisMock = {} as unknown as HogeServer;
const err = 1234;
const cbFn = jest.fn();
handle.call(thisMock, err, cbFn);
expect(cbFn).toHaveBeenCalledWith(200);
});
});
- 投稿日:
今回は何故単体テスト書くのかというのを個人的な見地から書いていく。TypeScriptとJestで記述するが、他の言語でも応用は可能だと思う。
単体テストとは何か?
関数やクラスのメソッドを単体としてみた場合の振る舞いを確かめるものである。以下はその一例だ。
hoge.ts
export const joinString = (string1: string, string2: string) => {
return `${string1}${string2}`;
};
hoge.spec.ts
import { joinString } from '.';
describe('joinString', () => {
it('引数として渡した文字列が正しく結合されること', () => {
const actual = joinString('123', 'abcd');
expect(actual).toBe('123abcd');
});
it('第一引数が空文字の時に第二引数のみが出力されること(空文字が結合されること)', () => {
const actual = joinString('', 'edfg');
expect(actual).toBe('edfg');
});
it('第二引数が空文字の時に第一引数のみが出力されること(空文字が結合されること)', () => {
const actual = joinString('zxcvb', '');
expect(actual).toBe('zxcvb');
});
});
何のために単体テストを実装するか
- 実装されているコードが実装者の意図通りに動いていることを証明するため
- いわゆるテストコードが仕様書になるってやつです
- 実装コードの改修時に元々の意図と異なる状況(不具合など)が発生した場合に、それを検知するため
- 初回実装時であってもコードを直したときに予期せぬ不具合を防ぐため
- 動作確認した後にちょろっと直すことはよくあると思うが、そういう時に動作を担保するのに使える
- 他にも実装時にコードを思案しながら書いているときに、動作確認をする手間を省くのにも使える
何故単体テストなのか?
結合テストやe2eテストではなく、何故単体テストをするか、これは実務面では結構出てくる疑問だと思うので、以下で説明する。
まず単体テストは一般的に結合テストやe2eテストに比べ、実行速度が速く、コードを修正したときに素早く回し、デグレードしていないかの確認に使うときに有益である。これは単体テストは実際にサーバーを起動したり、ヘッドレスブラウザでUI操作を行うなどしないためだ。他にも同じ処理を何度も見るのでテストのオーバーヘッドが膨らみ、実行時間が落ちるといったこともある。単体テストであれば簡単なロジックの実行しかしないし、結合部分はすべてモックにするため高速に実行できる利点がある。
次に結合テストやe2eテストは共通処理を一個直すと、それを使っている処理のテストをすべて直す必要があり、保守性がよくない。単体テストは基本的に直した箇所のテストコードを直すだけなので保守性が高い。
最後に単体テストでは基本的に関数単体を見るためテストコードが肥大化しづらく、見通しが良いので何をテストしているのかが結合テストやe2eテストと比べて分かりやすい。またスコープが関数単体であるため、カバレッジが取りやすく、いわゆるC0, C1, C2と言われる、命令網羅、分岐網羅、条件網羅の三点を網羅しやすい。結合やe2eでは共通処理の全機能を使うとは限らないため、この網羅がしづらい。
単体テスト向きの設計は何か?
これについてはSOLID原則を使った設計が一番無難だと考える。画面であれば更にMVCモデルを使うのがよい。
SOLIDにする利点
- S:単一責任の原則で関数の責務を切り分けることで、関数の責務を小さくすることができる。責務が小さい関数はテストケースが少なく、テストコードを書きやすく保守しやすい
- O:閉鎖解放の原則により、関数を呼ぶ関数自体を不変にでき、テストの保守性を向上することができる
- L:特にテストには貢献しない
- I:特にテストには貢献しない
- D:依存逆転の法則により、関数内で呼び出す関数をモックやスパイといったテストオブジェクトに置換できるため、テスト容易性が向上する
MVCにする利点
基本的に画面の実装は密結合になりやすい。密結合になっているとテストが書きづらいのでModelとViewとControllerに分けてテストをしやすくするのが目的だ。きちんと分けた場合、Viewは文字列が出ているか、表示項目が出ているかみたいなテストだけでよく、Modelはビジネスロジックのテストをするだけでいいし、Controllerは互いの橋渡しができているかを見ればいい。このため、テストコードをシンプルにできるのが利点だ。
欠点は画面の項目数が多い場合、インターフェースがそれに応じて肥大化するため、画面に仕様変更が入ったときに保守性が悪くなることだ。ここは品質とのトレードオフで許容するしかないと思う。
単体テストで処理の結合部をどう見るか
一つの関数で完結している関数はそれでいいとして、他の関数を呼んでいる関数をどのように単体テストするかという部分。よくあるパターンとしては他の関数ごとテストしてしまうことだが、これでは結合観点になってしまう。
この部分については呼び出す関数をモックすることで単体観点で確認することが出来る。呼び出す先の関数が単体テストで網羅されていれば、その関数の振る舞いは正しいはずなので、呼び出す側としては呼び出す関数をモックして、関数が正常終了したケースと、異常終了したケースでカバレッジが取れるようにテストすればよい。これは例えば次のようなテストを書くことが出来る。
index.ts
import { isEmpty } from './lib/string-util';
export const validate = (hoge: string) => {
if (isEmpty(hoge)) {
throw new Error('空です。');
} else {
// 何もしない
}
};
index.spec.ts
import { validate } from '.';
import * as empty from './lib/string-util';
jest.mock('./lib/string-util');
describe('validate', () => {
it('hogeが空文字の場合、例外がスローされること', () => {
jest.spyOn(empty, 'isEmpty').mockReturnValueOnce(true);
expect(() => {
validate('aaaa');
}).toThrow(new Error('空です。'));
});
it('hogeが空文字でない場合、例外がスローされないこと', () => {
jest.spyOn(empty, 'isEmpty').mockReturnValueOnce(false);
expect(() => {
validate('aaaa');
}).not.toThrow(new Error('空です。'));
});
});
このテストではisEmpty()
の実際の振る舞いを一切見ていないため、validate()
の単体テストということが出来る。但しisEmpty()
のテストが漏れていると機能しないため、これをきちんと機能させる場合、呼び出し先の関数の単体テストも必須だ。
単体テストに出来ない事と、単体テストの意義
単体テストは単体を見るものなので、当たり前だが単体しか見ることが出来ない。結合観点やe2e観点はなく、単体テストが通っているからデグレやバグがないという通りはない。
基本的に単体テストは動作確認が人間がやり、カバレッジが網羅できており、テストしている内容も正しければ以後のテストを工数を削るためのものである。過去に行った動作確認でテストが通っていて、今も通っているのだから恐らく動作しているだろうということを見るためのもので、単体テストが通っているからデグレがないとか、そんなことの保証はない。
では単体テストを何のためにするかだが、複数の確認工程鵜を作ることでバグを作りこむことを防ぐ役割が一つだ。例えば単体テスト+結合テスト+e2eテスト+人による動作確認やテストと言ったように多層の防御があれば、不具合が起きる可能性を減らすことが出来る。もう一つはコードの仕様となることだ。実装を見て意図が読み取れないコードであってもテストコードがあればわかることもあるだろう。つまるところ実装品質を保つための防御機構の一つとみなすことが出来る。
単体テストを書くときにやったほうがいいこと
テストコードの動作確認をする
テストコードを書いても、そのテストコードが有効に動いているかどうかの観点が抜けていると有意なものとならないので、テストコードの動作確認は必要だ。偶にテストコードは動いているが、偶々テストがパスしてそれっぽく動いているだけみたいなこともある。TDDでやってもこれは起きえる。
期待値や結果値をいじって落ちるかどうかや、パラメーターなどの条件をいじって落ちるかは見たほうが良い。何をしてもパスする場合、そのテストコードは無意味である。
境界値テストを書く
文字列の入力パターンを見るテストや組み合わせテストではカバレッジを網羅していてもテストケースが漏れていることがある。例えば次のテストコードはカバレッジ100%だがtrueになる場合のテストが不足している。もしも関数の中身が必ずfalse
を返す実装になっている場合に、これを確かめることが出来ない。実装を知っているからこれでいいとみなすのではなく、基本的には実装を知らない体で書いた方が良い。とはいえ、限度はあるので現実的に起きうる条件でテストするのが無難だろう。この辺りはSIerで堅めの開発をしていると身に付きやすいのだが、個人の感性に左右される部分であり難しいところでもあると思う。
index.ts
export const isEmpty = (str: string) => {
return str === '';
};
index.spec.ts
import { isEmpty } from '.';
describe('isEmpty', () => {
it('空文字でない時にfalseが返る事', () => {
const actual = isEmpty('aa');
expect(actual).toBe(false);
});
});
変数を型で縛る
例えば以下の実装であれば引数は文字列型なので文字列以外が来ることは考えなくていい。
export const isEmpty = (str: string) => {
return str === '';
};
しかし以下の実装では何が来るかわからない。テストとしてはありとあらゆる値が来ることを想定して書かないとリファクタリングに耐えられないだろう。そんなテストは書きたくない。そもそも実装からどれほどテストを書けばいいのか予測し辛いのもある。
export const isEmpty = (str: any) => {
return str === '';
};
もしどうしても何が来るかわからない場合はunknown
にしておくとよいだろう。何故なら以下のコードはエラーになるからだ。
export const isEmpty = (str: unknown) => {
return str === '';
};
また全体的にきちんと型で縛っておくと、改修などで型が変わった時に実装コードやテストで型不整合が発生する機会が増え、型チェックでエラーが発生するため、未然に不具合を防ぎやすくなる筈だ。
- 投稿日:
親クラスをモックして子クラスの単体テストをしたいときに
確認環境
Env | Ver |
---|---|
@swc/cli | 0.1.65 |
@swc/core | 1.3.105 |
@swc/jest | 0.2.31 |
@types/jest | 29.5.11 |
jest | 29.7.0 |
typescript | 5.3.3 |
サンプルコード
コードのフルセットは以下
https://github.com/Lycolia/typescript-code-examples/tree/main/mocking-base-class-with-extension-class-swc-ts
ディレクトリ構成
src
├─BaseClass
│ └─index.ts
└─ChildrenClass
├─index.ts
└─index.spec.ts
src/BaseClass/index.ts
親クラス。この例は抽象クラスだが別に具象クラスでも何でもいいと思う
export abstract class BaseClass {
constructor(
private baseValue: string,
private ctx: { [key: string]: unknown }
) {}
public hoge<ResultT>(payload: { [key: string]: unknown }) {
// テスト走行時には全て無効な値を流し込むため
// それらの影響で落ちないことの確認のために、オブジェクトの子を意図的に書いている
console.log(this.baseValue, this.ctx.hoge, payload.piyo);
// サンプルコードなので戻り値はスタブ
return {} as ResultT;
}
}
src/ChildrenClass/index.ts
子クラス
import { BaseClass } from '../BaseClass';
export class ChildrenClass extends BaseClass {
constructor(baseValue: string, ctx: { [key: string]: unknown }) {
super(baseValue, ctx);
}
public piyo<ResultT>(payload: { [key: string]: unknown }) {
try {
// このsuper.hoge()をモックして、
// catchの中に流れるかどうかを確認するのが目的
return super.hoge<ResultT>(payload);
} catch (err) {
// 実際はロガーが動くような部分だが、サンプルコードのためconsole.logで代用する
console.log(err);
throw err;
}
}
}
src/ChildrenClass/index.spec.ts
子クラスのテスト
import { ChildrenClass } from '.';
import { BaseClass } from '../BaseClass';
describe('fetch', () => {
it('親のfetchが呼ばれ、親の戻り値が返ってくること', () => {
// 子が正しくreturnしてくるかどうかを確認するための値
const expected = { code: 200 };
// Class.prototypeとやるとモック出来る
const spiedSuperFetch = jest
.spyOn(BaseClass.prototype, 'hoge')
.mockReturnValue(expected);
// 親クラスの処理はモックするので適当な値を入れておく
// この内容が実行されていればテストが落ちるのでテストコードが間違っていることの検証に使える
const inst = new ChildrenClass('aaaa', {} as { [key: string]: unknown });
const actual = inst.piyo({ foo: 123 });
// 親クラスのメソッドが正しい引数で呼ばれたことの確認
expect(spiedSuperFetch).toHaveBeenCalledWith({ foo: 123 });
// 子クラスのメソッドの戻り値が正しいことの確認
expect(actual).toStrictEqual(expected);
});
it('親のfetchで例外が出たときに、ログ出力とリスローがされること', () => {
const expected = Error('ERR');
// 親クラスのメソッドが例外をスローするケースを作る
jest.spyOn(BaseClass.prototype, 'hoge').mockImplementation(() => {
throw expected;
});
// catch句の中でロガーが動いているかどうかの検査用
const spiedConsoleLog = jest.spyOn(console, 'log');
const inst = new ChildrenClass('aaaa', {} as { [key: string]: unknown });
// 例外がリスローされていることを確認
expect(() => {
inst.piyo({ foo: 123 });
}).toThrow(expected);
// ロガーが動いていることを確認
expect(spiedConsoleLog).toHaveBeenCalled();
});
});
- 投稿日:
以下のようなコードを書いたときにmockFnにイベント引数が渡らないが、これをどうにかして取る方法。結論から言うとまともに取れないが、試行錯誤した時のログとして残しておく
const mockFn = jest.fn();
render(<input onChange={mockFn} />);
fireEvent.change(inputElement, { target: { value: 'aaa' } });
確認環境
Env | Ver |
---|---|
@swc/core | 1.3.66 |
@swc/jest | 0.2.26 |
@testing-library/jest-dom | 5.16.5 |
@testing-library/react | 14.0.0 |
jest | 29.5.0 |
react | 18.2.0 |
サンプルコード
これは以下のように書くとfireEvent
の第二引数で指定したtarget.value
の部分だけは一応取れる。
理由としてはfireEvent
がelement.dispatchEvent
を読んでいると思われるためだ。余り深くは追っていないが、react-testing-libraryの実装上は多分そうなっていると思われる。
import { fireEvent, render } from '@testing-library/react';
it('test', () => {
const mockFn = jest.fn((ev) => {
console.log(ev);
});
const { container } = render(<input id="hoge" onChange={mockFn} value={'a'} />);
const element = container.querySelector('input');
if (element === null) throw new Error();
element.dispatchEvent = jest.fn();
fireEvent.change(element, {
target: {
value: 'bbb'
}
});
expect(element.dispatchEvent.mock.instances[0].value).toBe('bbb');
});